
SWEN 262
Engineering of Software Subsystems

Composite Design Challenges
● Recall one of the major design challenges with the Composite pattern:

leaf-specific operations.
○ Not all leaves in the hierarchy will need the same methods.

● The Network Administrator Console example.
○ Some statistics make sense for all network elements:

■ usage
■ temperature
■ energy consumption

○ Some make sense for some, but not others:
■ storage capacity (file systems)
■ bandwidth (subnets, routers)

Q: What is the appropriate solution to this
problem?

Leaf as Superset
Here the NetworkElement interface defines
all possible operations.

Therefore, each implementing class must
provide implementations for every method,
whether or not the specific statistic is
available for the element type.

The major advantage here is that every
node in the tree implements the same
interface, making code to gather statistics
clean and simple.

The major drawback is that some concrete
implementations will return meaningless
values for some statistics on some nodes.

Additionally, adding a new operation
requires changing all of the node subclasses
in the hierarchy.

Different Leaves
Here the NetworkElement interface defines
only common operations. Each
implementing class adds other methods as
appropriate.

The major advantage here is that every
node in the tree implements only the
methods that make sense for that specific
type of node.

But the major drawback is that all nodes are
potentially different, and lots of casting and
instanceof calls are needed to access
leaf-specific methods.

Adding a new operation also only requires
changing the nodes to which that operation
applies. Nice!

Stat Collector Class What if instead, we defined a StatCollector
class with a method that, given a specific
kind of network component, collects only the
stats that make sense for that component?

And modified the NetworkElement interface
to include a single method to accept a
StatCollector.

Each class in the composite then
implements the method...

...and, when visited by a StatCollector, pass
itself as an argument to the appropriate
method.

Stat Collector Class It’s also possible to create subclasses to
collect specific statistics, e.g. a temperature
collector, bandwidth collector, storage
collector, etc.

In this way, the same API can be used to
collect specific statistics on a different
interval than others.

Each calls only the methods on each
element that are important, or implements
operations in a different way.

Visitor

Intent
Represent the operation to be performed on the elements
of an object structure. Visitor lets you define a new
operation without changing the classes of the elements
on which it operates.

(Behavioral)

How Does Visitor Work?
● The object structure is not necessarily a data structure (like a tree). It can be

any class structure. Each class that makes up part of the object structure is an
Element.

● The Visitor interface defines a method for each concrete Element in the object
structure.

○ For example visitFileSystem(FileSystem fs) , visitNetwork(Network n) , etc.

● The Element interface defines a visit method that accepts any Visitor.
○ For example visit(StatCollector sc).

● An operation is some task that needs to be performed on the Elements in the
object structure.

○ For example, collecting network statistics.

● A concrete implementation of the Visitor interface is an operation.
○ Each implementation is a new operation.
○ New operations are added by adding new implementations.

In order for Visitor to work, some object in the
system must be able to iterate through the
elements of the object structure.

In this example, the Network iterates over the
elements that have been added to it and calls
"visit(StatCollector)" on each.

Each element calls the corresponding "visit"
method on the StatCollector, and passes itself
in as the argument e.g. the FileSystem calls
"visitFileSystem(this)".

This enables the StatCollector to call any
method defined by that object - no instanceof or
casting is necessary.

Visitor
● The primary purpose of Visitor is performing an operation on the elements in

an object structure (e.g. a tree).
● The operation is typically performed on the entire structure.

○ A concrete Visitor visits each element to perform the operation on the element, e.g. by
traversing through the nodes in a tree.

● The pattern allows a separation of concerns for the maintenance of the object
structure and performing operations on the elements of that structure.

Visitor
As with most design choices, Visitor is not without its potential drawbacks.
● Adding new concrete element classes is difficult.

○ All visitors must change to add a new method to visit the new concrete element.
○ It may be a better choice to put new functionality in the structure instead.

Frequency of...
Adding New Classes is

Rare Frequent

Adding New
Operations is...

Rare Either Structure

Frequent Visitor Hard

● Visitor also assumes that the element interfaces include sufficient access to
perform operations.

○ If not, encapsulation may need to be “broken,” e.g. using friends or package access.

Consequences
● Adding new operations is easy by adding a new visitor.
● A visitor gathers related operations into a single object rather than spreading

them over the object structure.
○ Conversely, visitors keep unrelated operations separate.

● Visitors can visit objects that do not have a common parent class.
● Visitors can accumulate state as they traverse the object structure.
● Adding new concrete element classes is harder as all of the visitor classes

must change.
● Encapsulation may need to be broken.
● We “bend” the “behaviors follow data” principle in exchange for making new

operations easier to add to a complex object structure.

